Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation.

نویسندگان

  • E Kvam
  • R M Tyrrell
چکیده

The premutagenic oxidative DNA base damage, 7,8-dihydro-8-oxoguanine, is induced in human skin fibroblasts by monochromatic radiation ranging from a UVB wavelength (312 nm) up to wavelengths in the near visible (434 nm). The oxidative damage is not generated by absorption of radiation in DNA but rather by activation of photosensitizers generating genotoxic singlet oxygen species. The spectrum for the yield of the oxidative damage in confluent, non-growing, primary skin fibroblasts shows that it is UVA (above 334 nm) and near visible radiations which cause almost all of this guanine oxidation by natural sunlight in the fibroblast model. We estimate that the total amount of oxidation of guanine induced by sunlight in fibroblasts in the epidermis of the skin equals or exceeds the amount of the major type of direct DNA damage, cyclobutane pyrimidine dimers. In rapidly dividing lymphoblastoid cells, no oxidative guanine damage was induced. However, in melanoma cells almost as much damage as in non-growing fibroblasts (1.1 per 10(4) guanine bases after 1200 kJ/m2 UVA) was found. We conclude that oxidative DNA base damage can probably contribute to the induction of both non-melanoma and melanoma skin cancer by sunlight.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies on electron beam induced DNA damage and repair kinetics in lymphocytes by alkaline comet assay

Background: Exposure to ionizing radiation is known to induce oxidative stress followed by damage to critical biomolecules like lipids, proteins and DNA through radiolysis of cellular water. Since radiation has been widely used as an important tool in therapy of cancer, the detailed investigation regarding the DNA damage and repair kinetics would help to predict the radiation sensitivity of cel...

متن کامل

Can Light Emitted from Smartphone Screens and Taking Selfies Cause Premature Aging and Wrinkles?

Since the early days of human life on the Earth, our skin has been exposed to different levels of light. Recently, due to inevitable consequences of modern life, humans are not exposed to adequate levels of natural light during the day but they are overexposed to relatively high levels of artificial light at night. Skin is a major target of oxidative stress and the link between aging and oxidat...

متن کامل

Melatonin Role in Ameliorating Radiation-induced Skin Damage: From Theory to Practice (A Review of Literature)

Normal skin is composed of epidermis and dermis. Skin is susceptible to radiation damage because it is a continuously renewing organ containing rapidly proliferating mature cells. Radiation burn is a damage to the skin or other biological tissues caused by exposure to radiofrequency energy or ionizing radiation. Acute skin reaction is the most frequently occurring side effect of radiation thera...

متن کامل

The role and mechanisms of zinc oxide nanoparticles in the improvement of the radiosensitivity of lung cancer cells in clinically relevant megavoltage radiation energies in-vitro

Objective(s): Semiconductor zinc oxide nanoparticles (ZnO NPs) have unique properties, such as inherent selectivity and photosensitization effects under ultraviolet (UV) radiation. ZnO NPs serve as promising anticancer agents. However, UV radiation limits their penetration into the body. In most clinical settings, it is essential to use high-energy photons in the treatment of deep-seated tumors...

متن کامل

Oxidative Stress-Induced Protein Damage Inhibits DNA Repair and Determines Mutation Risk and Therapeutic Efficacy.

UNLABELLED The relationship between sun exposure and nonmelanoma skin cancer risk is well established. Solar UV (wavelength 280-400 nm) is firmly implicated in skin cancer development. Nucleotide excision repair (NER) protects against cancer by removing potentially mutagenic DNA lesions induced by UVB (280-320 nm). How the 20-fold more abundant UVA (320-400 nm) component of solar UV radiation i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carcinogenesis

دوره 18 12  شماره 

صفحات  -

تاریخ انتشار 1997